Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exact Enumeration of Distance-Hereditary Graphs (1608.01464v1)

Published 4 Aug 2016 in math.CO and cs.DM

Abstract: Distance-hereditary graphs form an important class of graphs, from the theoretical point of view, due to the fact that they are the totally decomposable graphs for the split-decomposition. The previous best enumerative result for these graphs is from Nakano et al. (J. Comp. Sci. Tech., 2007), who have proven that the number of distance-hereditary graphs on $n$ vertices is bounded by ${2{\lceil 3.59n\rceil}}$. In this paper, using classical tools of enumerative combinatorics, we improve on this result by providing an exact enumeration of distance-hereditary graphs, which allows to show that the number of distance-hereditary graphs on $n$ vertices is tightly bounded by ${(7.24975\ldots)n}$---opening the perspective such graphs could be encoded on $3n$ bits. We also provide the exact enumeration and asymptotics of an important subclass, the 3-leaf power graphs. Our work illustrates the power of revisiting graph decomposition results through the framework of analytic combinatorics.

Citations (8)

Summary

We haven't generated a summary for this paper yet.