Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithms for Locating Constrained Optimal Intervals (0809.2097v1)

Published 11 Sep 2008 in cs.DS

Abstract: In this work, we obtain the following new results. 1. Given a sequence $D=((h_1,s_1), (h_2,s_2) ..., (h_n,s_n))$ of number pairs, where $s_i>0$ for all $i$, and a number $L_h$, we propose an O(n)-time algorithm for finding an index interval $[i,j]$ that maximizes $\frac{\sum_{k=i}{j} h_k}{\sum_{k=i}{j} s_k}$ subject to $\sum_{k=i}{j} h_k \geq L_h$. 2. Given a sequence $D=((h_1,s_1), (h_2,s_2) ..., (h_n,s_n))$ of number pairs, where $s_i=1$ for all $i$, and an integer $L_s$ with $1\leq L_s\leq n$, we propose an $O(n\frac{T(L_s{1/2})}{L_s{1/2}})$-time algorithm for finding an index interval $[i,j]$ that maximizes $\frac{\sum_{k=i}{j} h_k}{\sqrt{\sum_{k=i}{j} s_k}}$ subject to $\sum_{k=i}{j} s_k \geq L_s$, where $T(n')$ is the time required to solve the all-pairs shortest paths problem on a graph of $n'$ nodes. By the latest result of Chan \cite{Chan}, $T(n')=O(n'3 \frac{(\log\log n')3}{(\log n')2})$, so our algorithm runs in subquadratic time $O(nL_s\frac{(\log\log L_s)3}{(\log L_s)2})$.

Summary

We haven't generated a summary for this paper yet.