Approximate kernel clustering (0807.4626v2)
Abstract: In the kernel clustering problem we are given a large $n\times n$ positive semi-definite matrix $A=(a_{ij})$ with $\sum_{i,j=1}na_{ij}=0$ and a small $k\times k$ positive semi-definite matrix $B=(b_{ij})$. The goal is to find a partition $S_1,...,S_k$ of ${1,... n}$ which maximizes the quantity $$ \sum_{i,j=1}k (\sum_{(i,j)\in S_i\times S_j}a_{ij})b_{ij}. $$ We study the computational complexity of this generic clustering problem which originates in the theory of machine learning. We design a constant factor polynomial time approximation algorithm for this problem, answering a question posed by Song, Smola, Gretton and Borgwardt. In some cases we manage to compute the sharp approximation threshold for this problem assuming the Unique Games Conjecture (UGC). In particular, when $B$ is the $3\times 3$ identity matrix the UGC hardness threshold of this problem is exactly $\frac{16\pi}{27}$. We present and study a geometric conjecture of independent interest which we show would imply that the UGC threshold when $B$ is the $k\times k$ identity matrix is $\frac{8\pi}{9}(1-\frac{1}{k})$ for every $k\ge 3$.