Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

A Network Protection Framework through Artificial Immunity (0805.1787v1)

Published 13 May 2008 in cs.MA and cs.CR

Abstract: Current network protection systems use a collection of intelligent components - e.g. classifiers or rule-based firewall systems to detect intrusions and anomalies and to secure a network against viruses, worms, or trojans. However, these network systems rely on individuality and support an architecture with less collaborative work of the protection components. They give less administration support for maintenance, but offer a large number of individual single points of failures - an ideal situation for network attacks to succeed. In this work, we discuss the required features, the performance, and the problems of a distributed protection system called {\it SANA}. It consists of a cooperative architecture, it is motivated by the human immune system, where the components correspond to artificial immune cells that are connected for their collaborative work. SANA promises a better protection against intruders than common known protection systems through an adaptive self-management while keeping the resources efficiently by an intelligent reduction of redundancies. We introduce a library of several novel and common used protection components and evaluate the performance of SANA by a proof-of-concept implementation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.