Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size (0804.0957v2)

Published 7 Apr 2008 in cs.CC

Abstract: The isolation lemma of Mulmuley et al \cite{MVV87} is an important tool in the design of randomized algorithms and has played an important role in several nontrivial complexity upper bounds. On the other hand, polynomial identity testing is a well-studied algorithmic problem with efficient randomized algorithms and the problem of obtaining efficient \emph{deterministic} identity tests has received a lot of attention recently. The goal of this note is to compare the isolation lemma with polynomial identity testing: 1. We show that derandomizing reasonably restricted versions of the isolation lemma implies circuit size lower bounds. We derive the circuit lower bounds by examining the connection between the isolation lemma and polynomial identity testing. We give a randomized polynomial-time identity test for noncommutative circuits of polynomial degree based on the isolation lemma. Using this result, we show that derandomizing the isolation lemma implies noncommutative circuit size lower bounds. The restricted versions of the isolation lemma we consider are natural and would suffice for the standard applications of the isolation lemma. 2. From the result of Klivans-Spielman \cite{KS01} we observe that there is a randomized polynomial-time identity test for commutative circuits of polynomial degree, also based on a more general isolation lemma for linear forms. Consequently, derandomization of (a suitable version of) this isolation lemma also implies circuit size lower bounds in the commutative setting.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.