Possible discovery of a nonlinear tail and second-order quasinormal modes in black hole ringdown (0803.0501v2)
Abstract: We investigate the nonlinear evolution of black hole ringdown in the framework of higher-order metric perturbation theory. By solving the initial-value problem of a simplified nonlinear field model analytically as well as numerically, we find that (i) second-order quasinormal modes (QNMs) are indeed excited at frequencies different from those of first-order QNMs, as predicted recently. We also find serendipitously that (ii) late-time evolution is dominated by a new type of power-law tail. This ``second-order power-law tail'' decays more slowly than any late-time tails known in the first-order (i.e., linear) perturbation theory, and is generated at the wavefront of the first-order perturbation by an essentially nonlinear mechanism. These nonlinear components should be particularly significant for binary black hole coalescences, and could open a new precision science in gravitational wave studies.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.