Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal In-Place Reconfiguration Algorithm for Sliding Cube-Shaped Robots in a Quadratic Number of Moves (0802.3414v4)

Published 23 Feb 2008 in cs.CG, cs.MA, and cs.RO

Abstract: In the modular robot reconfiguration problem, we are given $n$ cube-shaped modules (or robots) as well as two configurations, i.e., placements of the $n$ modules so that their union is face-connected. The goal is to find a sequence of moves that reconfigures the modules from one configuration to the other using "sliding moves," in which a module slides over the face or edge of a neighboring module, maintaining connectivity of the configuration at all times. For many years it has been known that certain module configurations in this model require at least $\Omega(n2)$ moves to reconfigure between them. In this paper, we introduce the first universal reconfiguration algorithm -- i.e., we show that any $n$-module configuration can reconfigure itself into any specified $n$-module configuration using just sliding moves. Our algorithm achieves reconfiguration in $O(n2)$ moves, making it asymptotically tight. We also present a variation that reconfigures in-place, it ensures that throughout the reconfiguration process, all modules, except for one, will be contained in the union of the bounding boxes of the start and end configuration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. Universal reconfiguration of (hyper-)cubic robots. arXiv preprint, 2008. arXiv:0802.3414v3.
  2. Universal reconfiguration of facet-connected modular robots by pivots: The O⁢(1)𝑂1O(1)italic_O ( 1 ) Musketeers. Algorithmica, 83:1316–1351, 2021. doi:10.1007/s00453-020-00784-6.
  3. Characterizing universal reconfigurability of modular pivoting robots. In Kevin Buchin and Éric Colin de Verdière, editors, Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2021.10.
  4. Compacting squares: Input-sensitive in-place reconfiguration of sliding squares. In Artur Czumaj and Qin Xin, editors, Proceedings of the 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SWAT.2022.4.
  5. Realistic reconfiguration of crystalline (and telecube) robots. In Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight International Workshop on the Algorithmic Foundations of Robotics, pages 433–447. Springer, 2009. doi:10.1007/978-3-642-00312-7_27.
  6. Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6-7):652–663, 2009. doi:10.1016/j.comgeo.2008.11.003.
  7. Reconfiguration of cube-style modular robots using o⁢(log⁡n)𝑜𝑛o(\log n)italic_o ( roman_log italic_n ) parallel moves. In Proceedings of Algorithms and Computation: 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008, pages 342–353. Springer, 2008. doi:10.1007/978-3-540-92182-0_32.
  8. Pushing squares around. Graphs and Combinatorics, 22(1):37–50, 2006. doi:10.1007/s00373-005-0640-1.
  9. Motion planning for metamorphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transactions on Robotics and Automation, 20(3):409–418, 2004. doi:10.1109/TRA.2004.824936.
  10. Reconfiguration planning for heterogeneous self-reconfiguring robots. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), volume 3, pages 2460–2467. IEEE, 2003. doi:10.1109/IROS.2003.1249239.
  11. Optimal in-place compaction of sliding cubes. arXiv preprint. arXiv:2312.15096.
  12. Hiding sliding cubes: Why reconfiguring modular robots is not easy (media exposition). In Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SoCG.2020.78.
  13. Reconfiguring sliding squares in-place by flooding. In Proceedings of the 36th European Workshop on Computational Geometry (EuroCG’20), 2020. Art. 32.
  14. Reconfiguration planning for pivoting cube modular robots. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 1933–1940. IEEE, 2015. doi:10.1109/ICRA.2015.7139451.
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com