Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal In-Place Compaction of Sliding Cubes (2312.15096v1)

Published 22 Dec 2023 in cs.CG and cs.RO

Abstract: The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. The best algorithm currently known for the reconfiguration problem, by Abel and Kominers [arXiv, 2011], uses O(n3) moves to transform any n-cube configuration into any other n-cube configuration. As is common in the literature, this algorithm reconfigures the input into an intermediate canonical shape. In this paper we present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our algorithm directly extends to dimensions higher than three.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Universal reconfiguration of (hyper-)cubic robots. ArXiv e-Prints, 2011. URL: https://arxiv.org/abs/0802.3414v3.
  2. Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers. Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/S00453-020-00784-6.
  3. Characterizing universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of LIPIcs, pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.SoCG.2021.10.
  4. Compacting squares: Input-sensitive in-place reconfiguration of sliding squares. In Proc. 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), volume 227 of LIPIcs, pages 4:1–4:19, 2022. doi:10.4230/LIPICS.SWAT.2022.4.
  5. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71, 2011. doi:10.1017/S026357471000072X.
  6. Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6):652 – 663, 2009. doi:10.1016/j.comgeo.2008.11.003.
  7. Centralised connectivity-preserving transformations by rotation: 3 musketeers for all orthogonal convex shapes. In Proc. 18th International Symposium on Algorithmics of Wireless Networks (ALGOSENSORS 2022), volume 13707 of LNCS, pages 60–76. Springer, 2022. doi:10.1007/978-3-031-22050-0_5.
  8. Pushing squares around. Graphs and Combinatorics, 22:37–50, 2006. doi:10.1007/s00373-005-0640-1.
  9. Connected coordinated motion planning with bounded stretch. In Proc. 32nd International Symposium on Algorithms and Computation (ISAAC 2021), volume 212 of LIPIcs, pages 9:1–9:16, 2021. doi:10.4230/LIPIcs.ISAAC.2021.9.
  10. Reconfiguring non-convex holes in pivoting modular cube robots. IEEE Robotics and Automation Letters, 6(4):6701–6708, 2021. doi:10.1109/LRA.2021.3095030.
  11. Reconfiguration planning for heterogeneous self-reconfiguring robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots and System (IROS 2003), volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.
  12. Distributed reconfiguration of 2D lattice-based modular robotic systems. Autonomous Robots, 38:383–413, 2015. doi:10.1007/s10514-015-9421-8.
  13. On the transformation capability of feasible mechanisms for programmable matter. In Proc. 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs, pages 136:1–136:15, 2017. doi:10.4230/LIPICS.ICALP.2017.136.
  14. Hiding sliding cubes: Why reconfiguring modular robots is not easy. In Proc. 36th International Symposium on Computational Geometry, (SoCG 2020, Media Exposition), volume 164 of LIPIcs, pages 78:1–78:5, 2020. doi:10.4230/LIPICS.SOCG.2020.78.
  15. Reconfiguring sliding squares in-place by flooding. In Proc. 36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.
  16. A new meta-module design for efficient reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021. doi:10.1007/s10514-021-09977-6.
  17. Reconfiguration planning for pivoting cube modular robots. In Proc. IEEE International Conference on Robotics and Automation (ICRA 2015), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.
Citations (3)

Summary

We haven't generated a summary for this paper yet.