Optimal In-Place Compaction of Sliding Cubes (2312.15096v1)
Abstract: The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. The best algorithm currently known for the reconfiguration problem, by Abel and Kominers [arXiv, 2011], uses O(n3) moves to transform any n-cube configuration into any other n-cube configuration. As is common in the literature, this algorithm reconfigures the input into an intermediate canonical shape. In this paper we present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our algorithm directly extends to dimensions higher than three.
- Universal reconfiguration of (hyper-)cubic robots. ArXiv e-Prints, 2011. URL: https://arxiv.org/abs/0802.3414v3.
- Universal reconfiguration of facet-connected modular robots by pivots: The O(1) musketeers. Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/S00453-020-00784-6.
- Characterizing universal reconfigurability of modular pivoting robots. In Proc. 37th International Symposium on Computational Geometry (SoCG 2021), volume 189 of LIPIcs, pages 10:1–10:20, 2021. doi:10.4230/LIPIcs.SoCG.2021.10.
- Compacting squares: Input-sensitive in-place reconfiguration of sliding squares. In Proc. 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), volume 227 of LIPIcs, pages 4:1–4:19, 2022. doi:10.4230/LIPICS.SWAT.2022.4.
- Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71, 2011. doi:10.1017/S026357471000072X.
- Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6):652 – 663, 2009. doi:10.1016/j.comgeo.2008.11.003.
- Centralised connectivity-preserving transformations by rotation: 3 musketeers for all orthogonal convex shapes. In Proc. 18th International Symposium on Algorithmics of Wireless Networks (ALGOSENSORS 2022), volume 13707 of LNCS, pages 60–76. Springer, 2022. doi:10.1007/978-3-031-22050-0_5.
- Pushing squares around. Graphs and Combinatorics, 22:37–50, 2006. doi:10.1007/s00373-005-0640-1.
- Connected coordinated motion planning with bounded stretch. In Proc. 32nd International Symposium on Algorithms and Computation (ISAAC 2021), volume 212 of LIPIcs, pages 9:1–9:16, 2021. doi:10.4230/LIPIcs.ISAAC.2021.9.
- Reconfiguring non-convex holes in pivoting modular cube robots. IEEE Robotics and Automation Letters, 6(4):6701–6708, 2021. doi:10.1109/LRA.2021.3095030.
- Reconfiguration planning for heterogeneous self-reconfiguring robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots and System (IROS 2003), volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.
- Distributed reconfiguration of 2D lattice-based modular robotic systems. Autonomous Robots, 38:383–413, 2015. doi:10.1007/s10514-015-9421-8.
- On the transformation capability of feasible mechanisms for programmable matter. In Proc. 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs, pages 136:1–136:15, 2017. doi:10.4230/LIPICS.ICALP.2017.136.
- Hiding sliding cubes: Why reconfiguring modular robots is not easy. In Proc. 36th International Symposium on Computational Geometry, (SoCG 2020, Media Exposition), volume 164 of LIPIcs, pages 78:1–78:5, 2020. doi:10.4230/LIPICS.SOCG.2020.78.
- Reconfiguring sliding squares in-place by flooding. In Proc. 36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.
- A new meta-module design for efficient reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021. doi:10.1007/s10514-021-09977-6.
- Reconfiguration planning for pivoting cube modular robots. In Proc. IEEE International Conference on Robotics and Automation (ICRA 2015), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.