Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cumulative and Averaging Fission of Beliefs (0712.1182v1)

Published 7 Dec 2007 in cs.AI and cs.LO

Abstract: Belief fusion is the principle of combining separate beliefs or bodies of evidence originating from different sources. Depending on the situation to be modelled, different belief fusion methods can be applied. Cumulative and averaging belief fusion is defined for fusing opinions in subjective logic, and for fusing belief functions in general. The principle of fission is the opposite of fusion, namely to eliminate the contribution of a specific belief from an already fused belief, with the purpose of deriving the remaining belief. This paper describes fission of cumulative belief as well as fission of averaging belief in subjective logic. These operators can for example be applied to belief revision in Bayesian belief networks, where the belief contribution of a given evidence source can be determined as a function of a given fused belief and its other contributing beliefs.

Summary

We haven't generated a summary for this paper yet.