Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Generalized Asymptotic Equipartition Property: Necessary and Sufficient Conditions (0711.2666v1)

Published 16 Nov 2007 in cs.IT and math.IT

Abstract: Suppose a string $X_1n=(X_1,X_2,...,X_n)$ generated by a memoryless source $(X_n){n\geq 1}$ with distribution $P$ is to be compressed with distortion no greater than $D\geq 0$, using a memoryless random codebook with distribution $Q$. The compression performance is determined by the ``generalized asymptotic equipartition property'' (AEP), which states that the probability of finding a $D$-close match between $X_1n$ and any given codeword $Y_1n$, is approximately $2{-n R(P,Q,D)}$, where the rate function $R(P,Q,D)$ can be expressed as an infimum of relative entropies. The main purpose here is to remove various restrictive assumptions on the validity of this result that have appeared in the recent literature. Necessary and sufficient conditions for the generalized AEP are provided in the general setting of abstract alphabets and unbounded distortion measures. All possible distortion levels $D\geq 0$ are considered; the source $(X_n){n\geq 1}$ can be stationary and ergodic; and the codebook distribution can have memory. Moreover, the behavior of the matching probability is precisely characterized, even when the generalized AEP is not valid. Natural characterizations of the rate function $R(P,Q,D)$ are established under equally general conditions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.