Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Source/Channel Duality (1701.07695v1)

Published 26 Jan 2017 in cs.IT and math.IT

Abstract: We propose a source/channel duality in the exponential regime, where success/failure in source coding parallels error/correctness in channel coding, and a distortion constraint becomes a log-likelihood ratio (LLR) threshold. We establish this duality by first deriving exact exponents for lossy coding of a memoryless source P, at distortion D, for a general i.i.d. codebook distribution Q, for both encoding success (R < R(P,Q,D)) and failure (R > R(P,Q,D)). We then turn to maximum likelihood (ML) decoding over a memoryless channel P with an i.i.d. input Q, and show that if we substitute P=QP, Q=Q, and D=0 under the LLR distortion measure, then the exact exponents for decoding-error (R < I(Q, P)) and strict correct-decoding (R > I(Q, P)) follow as special cases of the exponents for source encoding success/failure, respectively. Moreover, by letting the threshold D take general values, the exact random-coding exponents for erasure (D > 0) and list decoding (D < 0) under the simplified Forney decoder are obtained. Finally, we derive the exact random-coding exponent for Forney's optimum tradeoff erasure/list decoder, and show that at the erasure regime it coincides with Forney's lower bound and with the simplified decoder exponent.

Citations (5)

Summary

We haven't generated a summary for this paper yet.