Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Satisfiability Threshold and Clustering of Solutions of Random 3-SAT Formulas (0710.0805v3)

Published 3 Oct 2007 in cs.CC

Abstract: We study the structure of satisfying assignments of a random 3-SAT formula. In particular, we show that a random formula of density 4.453 or higher almost surely has no non-trivial "core" assignments. Core assignments are certain partial assignments that can be extended to satisfying assignments, and have been studied recently in connection with the Survey Propagation heuristic for random SAT. Their existence implies the presence of clusters of solutions, and they have been shown to exist with high probability below the satisfiability threshold for k-SAT with k>8, by Achlioptas and Ricci-Tersenghi, STOC 2006. Our result implies that either this does not hold for 3-SAT or the threshold density for satisfiability in 3-SAT lies below 4.453. The main technical tool that we use is a novel simple application of the first moment method.

Citations (24)

Summary

We haven't generated a summary for this paper yet.