Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Algorithmic Phase Transition of Random $k$-SAT for Low Degree Polynomials (2106.02129v3)

Published 3 Jun 2021 in cs.CC, cs.DS, math-ph, math.MP, math.PR, and stat.ML

Abstract: Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that satisfying assignments exist with high probability up to clause density $m/n = 2k \log 2 - \frac12 (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? We prove that the class of low degree polynomial algorithms cannot find a satisfying assignment at clause density $(1 + o_k(1)) \kappa* 2k \log k / k$ for a universal constant $\kappa* \approx 4.911$. This class encompasses Fix, message passing algorithms including Belief and Survey Propagation guided decimation (with bounded or mildly growing number of rounds), and local algorithms on the factor graph. This is the first hardness result for any class of algorithms at clause density within a constant factor of that achieved by Fix. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Guy Bresler (54 papers)
  2. Brice Huang (19 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.