Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A High-Order Cumulant Extension of Quasi-Linkage Equilibrium (2509.10987v1)

Published 13 Sep 2025 in q-bio.PE and stat.CO

Abstract: A central question in evolutionary biology is how to quantitatively understand the dynamics of genetically diverse populations. Modeling the genotype distribution is challenging, as it ultimately requires tracking all correlations (or cumulants) among alleles at different loci. The quasi-linkage equilibrium (QLE) approximation simplifies this by assuming that correlations between alleles at different loci are weak -- i.e., low linkage disequilibrium -- allowing their dynamics to be modeled perturbatively. However, QLE breaks down under strong selection, significant epistatic interactions, or weak recombination. We extend the multilocus QLE framework to allow cumulants up to order $K$ to evolve dynamically, while higher-order cumulants ($>K$) are assumed to equilibrate rapidly. This extended QLE (exQLE) framework yields a general equation of motion for cumulants up to order $K$, which parallels the standard QLE dynamics (recovered when $K = 1$). In this formulation, cumulant dynamics are driven by the gradient of average fitness, mediated by a geometrically interpretable matrix that stems from competition among genotypes. Our analysis shows that the exQLE with $K=2$ accurately captures cumulant dynamics even when the fitness function includes higher-order (e.g., third- or fourth-order) epistatic interactions, capabilities that standard QLE lacks. We also applied the exQLE framework to infer fitness parameters from temporal sequence data. Overall, exQLE provides a systematic and interpretable approximation scheme, leveraging analytical cumulant dynamics and reducing complexity by progressively truncating higher-order cumulants.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 6 posts and received 5 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube