Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the colored Links--Gould polynomial (2509.10911v1)

Published 13 Sep 2025 in math.QA and math.GT

Abstract: We give a cabling formula for the Links--Gould polynomial of knots colored with a $4n$-dimensional irreducible representation of $\mathrm{U}H_q\mathfrak{sl}(2|1)$ and identify them with the $V_n$-polynomial of knots for $n=2$. Using the cabling formula, we obtain genus bounds and a specialization to the Alexander polynomial for the colored Links--Gould polynomial that is independent of $n$, which implies corresponding properties of the $V_n$-polynomial for $n=2$ conjectured in previous work of two of the authors, and extends the work done for $n=1$. Combined with work of one of the authors arXiv:2409.03557, our genus bound for $\mathrm{LG}{(2)}=V_2$ is sharp for all knots with up to $16$ crossings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

alphaXiv