Feed-O-Meter: Fostering Design Feedback Skills through Role-playing Interactions with AI Mentee (2509.07424v1)
Abstract: Effective feedback, including critique and evaluation, helps designers develop design concepts and refine their ideas, supporting informed decision-making throughout the iterative design process. However, in studio-based design courses, students often struggle to provide feedback due to a lack of confidence and fear of being judged, which limits their ability to develop essential feedback-giving skills. Recent advances in LLMs suggest that role-playing with AI agents can let learners engage in multi-turn feedback without the anxiety of external judgment or the time constraints of real-world settings. Yet prior studies have raised concerns that LLMs struggle to behave like real people in role-play scenarios, diminishing the educational benefits of these interactions. Therefore, designing AI-based agents that effectively support learners in practicing and developing intellectual reasoning skills requires more than merely assigning the target persona's personality and role to the agent. By addressing these issues, we present Feed-O-Meter, a novel system that employs carefully designed LLM-based agents to create an environment in which students can practice giving design feedback. The system enables users to role-play as mentors, providing feedback to an AI mentee and allowing them to reflect on how that feedback impacts the AI mentee's idea development process. A user study (N=24) indicated that Feed-O-Meter increased participants' engagement and motivation through role-switching and helped them adjust feedback to be more comprehensible for an AI mentee. Based on these findings, we discuss future directions for designing systems to foster feedback skills in design education.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.