Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Maximum-likelihood estimation of the Matérn covariance structure of isotropic spatial random fields on finite, sampled grids (2509.06223v1)

Published 7 Sep 2025 in stat.ME, math.ST, and stat.TH

Abstract: We present a statistically and computationally efficient spectral-domain maximum-likelihood procedure to solve for the structure of Gaussian spatial random fields within the Matern covariance hyperclass. For univariate, stationary, and isotropic fields, the three controlling parameters are the process variance, smoothness, and range. The debiased Whittle likelihood maximization explicitly treats discretization and edge effects for finite sampled regions in parameter estimation and uncertainty quantification. As even the best parameter estimate may not be good enough, we provide a test for whether the model specification itself warrants rejection. Our results are practical and relevant for the study of a variety of geophysical fields, and for spatial interpolation, out-of-sample extension, kriging, machine learning, and feature detection of geological data. We present procedural details and high-level results on real-world examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.