Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust variational neural posterior estimation for simulation-based inference (2509.05724v1)

Published 6 Sep 2025 in stat.ML, astro-ph.GA, and cs.LG

Abstract: Recent advances in neural density estimation have enabled powerful simulation-based inference (SBI) methods that can flexibly approximate Bayesian inference for intractable stochastic models. Although these methods have demonstrated reliable posterior estimation when the simulator accurately represents the underlying data generative process (GDP), recent work has shown that they perform poorly in the presence of model misspecification. This poses a significant problem for their use on real-world problems, due to simulators always misrepresenting the true DGP to a certain degree. In this paper, we introduce robust variational neural posterior estimation (RVNP), a method which addresses the problem of misspecification in amortised SBI by bridging the simulation-to-reality gap using variational inference and error modelling. We test RVNP on multiple benchmark tasks, including using real data from astronomy, and show that it can recover robust posterior inference in a data-driven manner without adopting tunable hyperparameters or priors governing the misspecification.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.