Context-Aware Multi-Turn Visual-Textual Reasoning in LVLMs via Dynamic Memory and Adaptive Visual Guidance (2509.05669v1)
Abstract: Current LLMs and Vision-Language Large Models (LVLMs) excel in single-turn tasks but face significant challenges in multi-turn interactions requiring deep contextual understanding and complex visual reasoning, often leading to fragmented reasoning, context loss, and hallucinations. To address these limitations, we propose Context-Aware Multi-Turn Visual Reasoning (CAMVR), a novel framework designed to empower LVLMs with robust and coherent multi-turn visual-textual inference capabilities. CAMVR introduces two key innovations: a Visual-Textual Context Memory Unit (VCMU), a dynamic read-write memory network that stores and manages critical visual features, textual semantic representations, and their cross-modal correspondences from each interaction turn; and an Adaptive Visual Focus Guidance (AVFG) mechanism, which leverages the VCMU's context to dynamically adjust the visual encoder's attention to contextually relevant image regions. Our multi-level reasoning integration strategy ensures that response generation is deeply coherent with both current inputs and accumulated historical context. Extensive experiments on challenging datasets, including VisDial, an adapted A-OKVQA, and our novel Multi-Turn Instruction Following (MTIF) dataset, demonstrate that CAMVR consistently achieves state-of-the-art performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.