Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Behind the Mask: Benchmarking Camouflaged Jailbreaks in Large Language Models (2509.05471v1)

Published 5 Sep 2025 in cs.CR and cs.AI

Abstract: LLMs are increasingly vulnerable to a sophisticated form of adversarial prompting known as camouflaged jailbreaking. This method embeds malicious intent within seemingly benign language to evade existing safety mechanisms. Unlike overt attacks, these subtle prompts exploit contextual ambiguity and the flexible nature of language, posing significant challenges to current defense systems. This paper investigates the construction and impact of camouflaged jailbreak prompts, emphasizing their deceptive characteristics and the limitations of traditional keyword-based detection methods. We introduce a novel benchmark dataset, Camouflaged Jailbreak Prompts, containing 500 curated examples (400 harmful and 100 benign prompts) designed to rigorously stress-test LLM safety protocols. In addition, we propose a multi-faceted evaluation framework that measures harmfulness across seven dimensions: Safety Awareness, Technical Feasibility, Implementation Safeguards, Harmful Potential, Educational Value, Content Quality, and Compliance Score. Our findings reveal a stark contrast in LLM behavior: while models demonstrate high safety and content quality with benign inputs, they exhibit a significant decline in performance and safety when confronted with camouflaged jailbreak attempts. This disparity underscores a pervasive vulnerability, highlighting the urgent need for more nuanced and adaptive security strategies to ensure the responsible and robust deployment of LLMs in real-world applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.