Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

An Arbitration Control for an Ensemble of Diversified DQN variants in Continual Reinforcement Learning (2509.04815v1)

Published 5 Sep 2025 in cs.LG and cs.MA

Abstract: Deep reinforcement learning (RL) models, despite their efficiency in learning an optimal policy in static environments, easily loses previously learned knowledge (i.e., catastrophic forgetting). It leads RL models to poor performance in continual reinforcement learning (CRL) scenarios. To address this, we present an arbitration control mechanism over an ensemble of RL agents. It is motivated by and closely aligned with how humans make decisions in a CRL context using an arbitration control of multiple RL agents in parallel as observed in the prefrontal cortex. We integrated two key ideas into our model: (1) an ensemble of RLs (i.e., DQN variants) explicitly trained to have diverse value functions and (2) an arbitration control that prioritizes agents with higher reliability (i.e., less error) in recent trials. We propose a framework for CRL, an Arbitration Control for an Ensemble of Diversified DQN variants (ACED-DQN). We demonstrate significant performance improvements in both static and continual environments, supported by empirical evidence showing the effectiveness of arbitration control over diversified DQNs during training. In this work, we introduced a framework that enables RL agents to continuously learn, with inspiration from the human brain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)