Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Breaking the Mirror: Activation-Based Mitigation of Self-Preference in LLM Evaluators (2509.03647v1)

Published 3 Sep 2025 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs increasingly serve as automated evaluators, yet they suffer from "self-preference bias": a tendency to favor their own outputs over those of other models. This bias undermines fairness and reliability in evaluation pipelines, particularly for tasks like preference tuning and model routing. We investigate whether lightweight steering vectors can mitigate this problem at inference time without retraining. We introduce a curated dataset that distinguishes self-preference bias into justified examples of self-preference and unjustified examples of self-preference, and we construct steering vectors using two methods: Contrastive Activation Addition (CAA) and an optimization-based approach. Our results show that steering vectors can reduce unjustified self-preference bias by up to 97\%, substantially outperforming prompting and direct preference optimization baselines. Yet steering vectors are unstable on legitimate self-preference and unbiased agreement, implying self-preference spans multiple or nonlinear directions. This underscores both their promise and limits as safeguards for LLM-as-judges and motivates more robust interventions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.