Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Adaptive KV-Cache Compression without Manually Setting Budget (2509.03136v1)

Published 3 Sep 2025 in cs.DB and cs.AI

Abstract: LLMs inference relies heavily on KV-caches to accelerate autoregressive decoding, but the resulting memory footprint grows rapidly with sequence length, posing significant efficiency challenges. Current KV-cache compression methods suffer from a Procrustes' bed problem: they force diverse workloads into fixed compression ratios, leading to suboptimal resource allocation and inference performance. To this end, we present GVote, an adaptive KV-cache compression scheme that eliminates manual budget specification while achieving superior accuracy-efficiency trade-offs. GVote operates on the principle that the important keys are the aggregation of keys required by future queries. The method predicts future query attention demands by Monte-Carlo style sampling potential queries and aggregating selected keys to determine the optimal cache budget without manual specification. Experimental evaluation demonstrates GVote's effectiveness across multiple benchmarks, including GSM8K, RULER and Longbench. Compared to baselines, GVote exhibits 2$\times$ memory reduction while the accuracy maintains higher or comparable.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.