Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Morphology-Specific Peptide Discovery via Masked Conditional Generative Modeling (2509.02060v1)

Published 2 Sep 2025 in q-bio.BM and cs.LG

Abstract: Peptide self-assembly prediction offers a powerful bottom-up strategy for designing biocompatible, low-toxicity materials for large-scale synthesis in a broad range of biomedical and energy applications. However, screening the vast sequence space for categorization of aggregate morphology remains intractable. We introduce PepMorph, an end-to-end peptide discovery pipeline that generates novel sequences that are not only prone to aggregate but self-assemble into a specified fibrillar or spherical morphology. We compiled a new dataset by leveraging existing aggregation propensity datasets and extracting geometric and physicochemical isolated peptide descriptors that act as proxies for aggregate morphology. This dataset is then used to train a Transformer-based Conditional Variational Autoencoder with a masking mechanism, which generates novel peptides under arbitrary conditioning. After filtering to ensure design specifications and validation of generated sequences through coarse-grained molecular dynamics simulations, PepMorph yielded 83% accuracy in intended morphology generation, showcasing its promise as a framework for application-driven peptide discovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 12 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube