Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Open-World Retrieval-Augmented Generation on Knowledge Graph: A Multi-Agent Collaboration Framework (2509.01238v1)

Published 1 Sep 2025 in cs.AI

Abstract: LLMs have demonstrated strong capabilities in language understanding and reasoning. However, their dependence on static training corpora makes them prone to factual errors and knowledge gaps. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external knowledge sources, especially structured Knowledge Graphs (KGs), which provide explicit semantics and efficient retrieval. Existing KG-based RAG approaches, however, generally assume that anchor entities are accessible to initiate graph traversal, which limits their robustness in open world settings where accurate linking between the query and the entity is unreliable. To overcome this limitation, we propose AnchorRAG, a novel multi-agent collaboration framework for open-world RAG without the predefined anchor entities. Specifically, a predictor agent dynamically identifies candidate anchor entities by aligning user query terms with KG nodes and initializes independent retriever agents to conduct parallel multi-hop explorations from each candidate. Then a supervisor agent formulates the iterative retrieval strategy for these retriever agents and synthesizes the resulting knowledge paths to generate the final answer. This multi-agent collaboration framework improves retrieval robustness and mitigates the impact of ambiguous or erroneous anchors. Extensive experiments on four public benchmarks demonstrate that AnchorRAG significantly outperforms existing baselines and establishes new state-of-the-art results on the real-world question answering tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com