Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Thinking Hard, Going Misaligned: Emergent Misalignment in LLMs (2509.00544v1)

Published 30 Aug 2025 in cs.CL

Abstract: With LLMs becoming increasingly widely adopted, concerns regarding their safety and alignment with human values have intensified. Previous studies have shown that fine-tuning LLMs on narrow and malicious datasets induce misaligned behaviors. In this work, we report a more concerning phenomenon, Reasoning-Induced Misalignment. Specifically, we observe that LLMs become more responsive to malicious requests when reasoning is strengthened, via switching to "think-mode" or fine-tuning on benign math datasets, with dense models particularly vulnerable. Moreover, we analyze internal model states and find that both attention shifts and specialized experts in mixture-of-experts models help redirect excessive reasoning towards safety guardrails. These findings provide new insights into the emerging reasoning-safety trade-off and underscore the urgency of advancing alignment for advanced reasoning models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.