Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KG-CQR: Leveraging Structured Relation Representations in Knowledge Graphs for Contextual Query Retrieval (2508.20417v1)

Published 28 Aug 2025 in cs.CL and cs.DB

Abstract: The integration of knowledge graphs (KGs) with LLMs offers significant potential to improve the retrieval phase of retrieval-augmented generation (RAG) systems. In this study, we propose KG-CQR, a novel framework for Contextual Query Retrieval (CQR) that enhances the retrieval phase by enriching the contextual representation of complex input queries using a corpus-centric KG. Unlike existing methods that primarily address corpus-level context loss, KG-CQR focuses on query enrichment through structured relation representations, extracting and completing relevant KG subgraphs to generate semantically rich query contexts. Comprising subgraph extraction, completion, and contextual generation modules, KG-CQR operates as a model-agnostic pipeline, ensuring scalability across LLMs of varying sizes without additional training. Experimental results on RAGBench and MultiHop-RAG datasets demonstrate KG-CQR's superior performance, achieving a 4-6% improvement in mAP and a 2-3% improvement in Recall@25 over strong baseline models. Furthermore, evaluations on challenging RAG tasks such as multi-hop question answering show that, by incorporating KG-CQR, the performance consistently outperforms the existing baseline in terms of retrieval effectiveness

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.