Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Training-Free Underwater 3D Object Detection from Sonar Point Clouds: A Comparison of Traditional and Deep Learning Approaches (2508.18293v1)

Published 22 Aug 2025 in cs.CV, cs.AI, cs.LG, and cs.RO

Abstract: Underwater 3D object detection remains one of the most challenging frontiers in computer vision, where traditional approaches struggle with the harsh acoustic environment and scarcity of training data. While deep learning has revolutionized terrestrial 3D detection, its application underwater faces a critical bottleneck: obtaining sufficient annotated sonar data is prohibitively expensive and logistically complex, often requiring specialized vessels, expert surveyors, and favorable weather conditions. This work addresses a fundamental question: Can we achieve reliable underwater 3D object detection without real-world training data? We tackle this challenge by developing and comparing two paradigms for training-free detection of artificial structures in multibeam echo-sounder point clouds. Our dual approach combines a physics-based sonar simulation pipeline that generates synthetic training data for state-of-the-art neural networks, with a robust model-based template matching system that leverages geometric priors of target objects. Evaluation on real bathymetry surveys from the Baltic Sea reveals surprising insights: while neural networks trained on synthetic data achieve 98% mean Average Precision (mAP) on simulated scenes, they drop to 40% mAP on real sonar data due to domain shift. Conversely, our template matching approach maintains 83% mAP on real data without requiring any training, demonstrating remarkable robustness to acoustic noise and environmental variations. Our findings challenge conventional wisdom about data-hungry deep learning in underwater domains and establish the first large-scale benchmark for training-free underwater 3D detection. This work opens new possibilities for autonomous underwater vehicle navigation, marine archaeology, and offshore infrastructure monitoring in data-scarce environments where traditional machine learning approaches fail.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.