Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GUI Based Fuzzy Logic and Spatial Statistics for Unsupervised Microscopy Segmentation (2508.15979v1)

Published 21 Aug 2025 in eess.IV and cs.CV

Abstract: Brightfield microscopy imaging of unstained live cells remains a persistent challenge due to low contrast, temporal changes in specimen phenotypes, irregular illumination, and the absence of training labels. While deep learning (DL) methods (e.g., Cellpose 3.0) achieve state-of-the-art (SOTA) performance, they require extensive labeled data and heavy computational resources, and they often fail under uneven illumination. We present the first unsupervised segmentation framework combining spatial standard deviation from local mean (SSDLM), fuzzy logic, adjusted variograms, Moran's I, and cumulative squared shift of nodal intensity (CSSNI) to address these limitations. Unlike deep learning models, our approach requires no annotations or retraining and operates through a user-friendly GUI tailored for non-programming users. The robustness and generality were validated on three datasets, including cross-domain data. We benchmark our method against 2023--2024 SOTA models, including Cellpose 3.0 and StarDist, using a dataset of unstained myoblast images. Our method achieves a significant improvement in segmentation performance, with an IoU increase of up to 48\% and statistically validated superiority ($p < 0.01$, Wilcoxon signed-rank test). Expert evaluation from two biologists further supports the segmentation quality (Cohen's $\kappa > 0.75$). The proposed algorithm is lightweight, interpretable, and computationally efficient, offering a practical and effective alternative for cell segmentation in label-free microscopy. The code, the dataset, and the results are available for reproducibility*.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube