Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Robust Residual Finite Scalar Quantization for Neural Compression (2508.15860v1)

Published 20 Aug 2025 in eess.IV, cs.CV, and eess.AS

Abstract: Finite Scalar Quantization (FSQ) has emerged as a promising alternative to Vector Quantization (VQ) in neural compression, offering simplified training and improved stability. However, naive application of FSQ in residual quantization frameworks suffers from the \textbf{residual magnitude decay problem}, where subsequent FSQ layers receive progressively weaker signals, severely limiting their effectiveness. We propose \textbf{Robust Residual Finite Scalar Quantization (RFSQ)}, a general framework that addresses this fundamental limitation through two novel conditioning strategies: learnable scaling factors and invertible layer normalization. Our approach maintains the simplicity of FSQ while enabling effective multi-stage residual quantization. Comprehensive experiments on ImageNet demonstrate that RFSQ variants significantly outperform strong baselines including VQ-EMA, FSQ, and LFQ, achieving up to 45\% improvement in perceptual loss and 28.7\% reduction in L1 reconstruction error. The proposed LayerNorm strategy shows the most consistent improvements across different configurations, establishing RFSQ as a superior quantization method for neural compression.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)