Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Deep Learning for School Dropout Detection: A Comparison of Tabular and Graph-Based Models for Predicting At-Risk Students (2508.14057v1)

Published 9 Aug 2025 in cs.LG

Abstract: Student dropout is a significant challenge in educational systems worldwide, leading to substantial social and economic costs. Predicting students at risk of dropout allows for timely interventions. While traditional Machine Learning (ML) models operating on tabular data have shown promise, Graph Neural Networks (GNNs) offer a potential advantage by capturing complex relationships inherent in student data if structured as graphs. This paper investigates whether transforming tabular student data into graph structures, primarily using clustering techniques, enhances dropout prediction accuracy. We compare the performance of GNNs (a custom Graph Convolutional Network (GCN) and GraphSAGE) on these generated graphs against established tabular models (Random Forest (RF), XGBoost, and TabNet) using a real-world student dataset. Our experiments explore various graph construction strategies based on different clustering algorithms (K-Means, HDBSCAN) and dimensionality reduction techniques (Principal Component Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP)). Our findings demonstrate that a specific GNN configuration, GraphSAGE on a graph derived from PCA-KMeans clustering, achieved superior performance, notably improving the macro F1-score by approximately 7 percentage points and accuracy by nearly 2 percentage points over the strongest tabular baseline (XGBoost). However, other GNN configurations and graph construction methods did not consistently surpass tabular models, emphasizing the critical role of the graph generation strategy and GNN architecture selection. This highlights both the potential of GNNs and the challenges in optimally transforming tabular data for graph-based learning in this domain.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com