Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Prune2Drive: A Plug-and-Play Framework for Accelerating Vision-Language Models in Autonomous Driving (2508.13305v1)

Published 18 Aug 2025 in cs.CV

Abstract: Vision-LLMs (VLMs) have emerged as a promising paradigm in autonomous driving (AD), offering a unified framework for perception, reasoning, and decision-making by jointly modeling visual inputs and natural language instructions. However, their deployment is hindered by the significant computational overhead incurred when processing high-resolution, multi-view images, a standard setup in AD systems with six or more synchronized cameras. This overhead stems from the large number of visual tokens generated during encoding, increasing inference latency and memory consumption due to the quadratic complexity of self-attention. To address these challenges, we propose Prune2Drive, a plug-and-play visual token pruning framework for multi-view VLMs in autonomous driving. Prune2Drive introduces two core innovations: (i) a diversity-aware token selection mechanism inspired by farthest point sampling, which prioritizes semantic and spatial coverage across views rather than relying solely on attention scores, and (ii) a view-adaptive pruning controller that learns optimal pruning ratios for each camera view based on their importance to downstream driving tasks. Unlike prior methods, Prune2Drive does not require model retraining or access to attention maps, making it compatible with modern efficient attention implementations. Extensive experiments on two large-scale multi-view driving benchmarks, DriveLM and DriveLMM-o1, show that Prune2Drive achieves significant speedups and memory savings while maintaining or improving task performance. When retaining only 10% of the visual tokens, our method achieves a 6.40$\times$ speedup in the prefilling phase and consumes 13.4% of the original FLOPs, with only a 3% performance drop on the DriveLM benchmark.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.