EDGE: A Theoretical Framework for Misconception-Aware Adaptive Learning (2508.07224v1)
Abstract: We present EDGE, a general-purpose, misconception-aware adaptive learning framework composed of four stages: Evaluate (ability and state estimation), Diagnose (posterior infer-ence of misconceptions), Generate (counterfactual item synthesis), and Exercise (index-based retrieval scheduling). EDGE unifies psychometrics (IRT/Bayesian state space models), cog-nitive diagnostics (misconception discovery from distractor patterns and response latencies), contrastive item generation (minimal perturbations that invalidate learner shortcuts while pre-serving psychometric validity), and principled scheduling (a restless bandit approximation to spaced retrieval). We formalize a composite readiness metric, EdgeScore, prove its monotonicity and Lipschitz continuity, and derive an index policy that is near-optimal under mild assumptions on forgetting and learning gains. We further establish conditions under which counterfactual items provably reduce the posterior probability of a targeted misconception faster than standard practice. The paper focuses on theory and implementable pseudocode; empirical study is left to future work.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.