Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

Quantum Algorithm for Estimating Intrinsic Geometry (2508.06355v1)

Published 8 Aug 2025 in quant-ph

Abstract: High-dimensional datasets typically cluster around lower-dimensional manifolds but are also often marred by severe noise, obscuring the intrinsic geometry essential for downstream learning tasks. We present a quantum algorithm for estimating the intrinsic geometry of a point cloud -- specifically its local intrinsic dimension and local scalar curvature. These quantities are crucial for dimensionality reduction, feature extraction, and anomaly detection -- tasks that are central to a wide range of data-driven and data-assisted applications. In this work, we propose a quantum algorithm which takes a dataset with pairwise geometric distance, output the estimation of local dimension and curvature at a given point. We demonstrate that this quantum algorithm achieves an exponential speedup over its classical counterpart, and, as a corollary, further extend our main technique to diffusion maps, yielding exponential improvements even over existing quantum algorithms. Our work marks another step toward efficient quantum applications in geometrical data analysis, moving beyond topological summaries toward precise geometric inference and opening a novel, scalable path to quantum-enhanced manifold learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.