ECMF: Enhanced Cross-Modal Fusion for Multimodal Emotion Recognition in MER-SEMI Challenge (2508.05991v1)
Abstract: Emotion recognition plays a vital role in enhancing human-computer interaction. In this study, we tackle the MER-SEMI challenge of the MER2025 competition by proposing a novel multimodal emotion recognition framework. To address the issue of data scarcity, we leverage large-scale pre-trained models to extract informative features from visual, audio, and textual modalities. Specifically, for the visual modality, we design a dual-branch visual encoder that captures both global frame-level features and localized facial representations. For the textual modality, we introduce a context-enriched method that employs LLMs to enrich emotional cues within the input text. To effectively integrate these multimodal features, we propose a fusion strategy comprising two key components, i.e., self-attention mechanisms for dynamic modality weighting, and residual connections to preserve original representations. Beyond architectural design, we further refine noisy labels in the training set by a multi-source labeling strategy. Our approach achieves a substantial performance improvement over the official baseline on the MER2025-SEMI dataset, attaining a weighted F-score of 87.49% compared to 78.63%, thereby validating the effectiveness of the proposed framework.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.