Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Algorithms for Finite-horizon Markov Decision Processes (2508.05712v1)

Published 7 Aug 2025 in quant-ph

Abstract: In this work, we design quantum algorithms that are more efficient than classical algorithms to solve time-dependent and finite-horizon Markov Decision Processes (MDPs) in two distinct settings: (1) In the exact dynamics setting, where the agent has full knowledge of the environment's dynamics (i.e., transition probabilities), we prove that our $\textbf{Quantum Value Iteration (QVI)}$ algorithm $\textbf{QVI-1}$ achieves a quadratic speedup in the size of the action space $(A)$ compared with the classical value iteration algorithm for computing the optimal policy ($\pi{*}$) and the optimal V-value function ($V_{0}{*}$). Furthermore, our algorithm $\textbf{QVI-2}$ provides an additional speedup in the size of the state space $(S)$ when obtaining near-optimal policies and V-value functions. Both $\textbf{QVI-1}$ and $\textbf{QVI-2}$ achieve quantum query complexities that provably improve upon classical lower bounds, particularly in their dependences on $S$ and $A$. (2) In the generative model setting, where samples from the environment are accessible in quantum superposition, we prove that our algorithms $\textbf{QVI-3}$ and $\textbf{QVI-4}$ achieve improvements in sample complexity over the state-of-the-art (SOTA) classical algorithm in terms of $A$, estimation error $(\epsilon)$, and time horizon $(H)$. More importantly, we prove quantum lower bounds to show that $\textbf{QVI-3}$ and $\textbf{QVI-4}$ are asymptotically optimal, up to logarithmic factors, assuming a constant time horizon.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.