Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hybrid oscillator-qudit quantum processors: stabilizer states and symplectic operations (2508.04819v1)

Published 6 Aug 2025 in quant-ph, cs.IT, math-ph, math.IT, math.MP, and math.OA

Abstract: We construct stabilizer states and error-correcting codes on combinations of discrete- and continuous-variable systems, generalizing the Gottesman-Kitaev-Preskill (GKP) quantum lattice formalism. Our framework absorbs the discrete phase space of a qudit into a hybrid phase space parameterizable entirely by the continuous variables of a harmonic oscillator. The unit cell of a hybrid quantum lattice grows with the qudit dimension, yielding a way to simultaneously measure an arbitrarily large range of non-commuting position and momentum displacements. Simple hybrid states can be obtained by applying a conditional displacement to a Gottesman-Kitaev-Preskill (GKP) state and a Pauli eigenstate, or by encoding some of the physical qudits of a stabilizer state into a GKP code. The states' oscillator-qudit entanglement cannot be generated using symplectic (i.e., Gaussian-Clifford) operations, distinguishing them as a resource from tensor products of oscillator and qudit stabilizer states. We construct general hybrid error-correcting codes by relating stabilizer codes to non-commutative tori and obtaining logical operators via Morita equivalence. We provide examples using commutation matrices, integer symplectic matrices, and binary codes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets