Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Deep classification algorithm for De-identification of DICOM medical images (2508.02177v1)

Published 4 Aug 2025 in cs.CV

Abstract: Background : De-identification of DICOM (Digital Imaging and Communi-cations in Medicine) files is an essential component of medical image research. Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHI) need to be hidden or removed due to legal reasons. According to the Health Insurance Portability and Accountability Act (HIPAA) and privacy rules, also full-face photographic images and any compa-rable images are direct identifiers and are considered protected health information that also need to be de-identified. Objective : The study aimed to implement a method that permit to de-identify the PII and PHI information present in the header and burned on the pixel data of DICOM. Methods : To execute the de-identification, we implemented an algorithm based on the safe harbor method, defined by HIPAA. Our algorithm uses input customizable parameter to classify and then possibly de-identify individual DICOM tags. Results : The most sensible information, like names, history, personal data and institution were successfully recognized. Conclusions : We developed a python algorithm that is able to classify infor-mation present in a DICOM file. The flexibility provided by the use of customi-zable input parameters, which allow the user to customize the entire process de-pending on the case (e.g., the language), makes the entire program very promis-ing for both everyday use and research purposes. Our code is available at https://github.com/rtdicomexplorer/deep_deidentification.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com