Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

SpectralX: Parameter-efficient Domain Generalization for Spectral Remote Sensing Foundation Models (2508.01731v1)

Published 3 Aug 2025 in cs.CV

Abstract: Recent advances in Remote Sensing Foundation Models (RSFMs) have led to significant breakthroughs in the field. While many RSFMs have been pretrained with massive optical imagery, more multispectral/hyperspectral data remain lack of the corresponding foundation models. To leverage the advantages of spectral imagery in earth observation, we explore whether existing RSFMs can be effectively adapted to process diverse spectral modalities without requiring extensive spectral pretraining. In response to this challenge, we proposed SpectralX, an innovative parameter-efficient fine-tuning framework that adapt existing RSFMs as backbone while introducing a two-stage training approach to handle various spectral inputs, thereby significantly improving domain generalization performance. In the first stage, we employ a masked-reconstruction task and design a specialized Hyper Tokenizer (HyperT) to extract attribute tokens from both spatial and spectral dimensions. Simultaneously, we develop an Attribute-oriented Mixture of Adapter (AoMoA) that dynamically aggregates multi-attribute expert knowledge while performing layer-wise fine-tuning. With semantic segmentation as downstream task in the second stage, we insert an Attribute-refined Adapter (Are-adapter) into the first stage framework. By iteratively querying low-level semantic features with high-level representations, the model learns to focus on task-beneficial attributes, enabling customized adjustment of RSFMs. Following this two-phase adaptation process, SpectralX is capable of interpreting spectral imagery from new regions or seasons. The codes will be available from the website: https://github.com/YuxiangZhang-BIT.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com