Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Rein++: Efficient Generalization and Adaptation for Semantic Segmentation with Vision Foundation Models (2508.01667v1)

Published 3 Aug 2025 in cs.CV

Abstract: Vision Foundation Models(VFMs) have achieved remarkable success in various computer vision tasks. However, their application to semantic segmentation is hindered by two significant challenges: (1) the disparity in data scale, as segmentation datasets are typically much smaller than those used for VFM pre-training, and (2) domain distribution shifts, where real-world segmentation scenarios are diverse and often underrepresented during pre-training. To overcome these limitations, we present Rein++, an efficient VFM-based segmentation framework that demonstrates superior generalization from limited data and enables effective adaptation to diverse unlabeled scenarios. Specifically, Rein++ comprises a domain generalization solution Rein-G and a domain adaptation solution Rein-A. Rein-G introduces a set of trainable, instance-aware tokens that effectively refine the VFM's features for the segmentation task. This parameter-efficient approach fine-tunes less than 1% of the backbone's parameters, enabling robust generalization. Building on the Rein-G, Rein-A performs unsupervised domain adaptation at both the instance and logit levels to mitigate domain shifts. In addition, it incorporates a semantic transfer module that leverages the class-agnostic capabilities of the segment anything model to enhance boundary details in the target domain. The integrated Rein++ pipeline first learns a generalizable model on a source domain (e.g., daytime scenes) and subsequently adapts it to diverse target domains (e.g., nighttime scenes) without any target labels. Comprehensive experiments demonstrate that Rein++ significantly outperforms state-of-the-art methods with efficient training, underscoring its roles an efficient, generalizable, and adaptive segmentation solution for VFMs, even for large models with billions of parameters. The code is available at https://github.com/wloves/Rein.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube