Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

OmniUnet: A Multimodal Network for Unstructured Terrain Segmentation on Planetary Rovers Using RGB, Depth, and Thermal Imagery (2508.00580v1)

Published 1 Aug 2025 in cs.RO and cs.AI

Abstract: Robot navigation in unstructured environments requires multimodal perception systems that can support safe navigation. Multimodality enables the integration of complementary information collected by different sensors. However, this information must be processed by machine learning algorithms specifically designed to leverage heterogeneous data. Furthermore, it is necessary to identify which sensor modalities are most informative for navigation in the target environment. In Martian exploration, thermal imagery has proven valuable for assessing terrain safety due to differences in thermal behaviour between soil types. This work presents OmniUnet, a transformer-based neural network architecture for semantic segmentation using RGB, depth, and thermal (RGB-D-T) imagery. A custom multimodal sensor housing was developed using 3D printing and mounted on the Martian Rover Testbed for Autonomy (MaRTA) to collect a multimodal dataset in the Bardenas semi-desert in northern Spain. This location serves as a representative environment of the Martian surface, featuring terrain types such as sand, bedrock, and compact soil. A subset of this dataset was manually labeled to support supervised training of the network. The model was evaluated both quantitatively and qualitatively, achieving a pixel accuracy of 80.37% and demonstrating strong performance in segmenting complex unstructured terrain. Inference tests yielded an average prediction time of 673 ms on a resource-constrained computer (Jetson Orin Nano), confirming its suitability for on-robot deployment. The software implementation of the network and the labeled dataset have been made publicly available to support future research in multimodal terrain perception for planetary robotics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.