Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints (2507.23064v2)

Published 30 Jul 2025 in cs.CV, cs.AI, cs.LG, and cs.RO

Abstract: Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-LLM that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com