Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

LLMs Between the Nodes: Community Discovery Beyond Vectors (2507.22955v1)

Published 29 Jul 2025 in cs.SI and cs.LG

Abstract: Community detection in social network graphs plays a vital role in uncovering group dynamics, influence pathways, and the spread of information. Traditional methods focus primarily on graph structural properties, but recent advancements in LLMs open up new avenues for integrating semantic and contextual information into this task. In this paper, we present a detailed investigation into how various LLM-based approaches perform in identifying communities within social graphs. We introduce a two-step framework called CommLLM, which leverages the GPT-4o model along with prompt-based reasoning to fuse LLM outputs with graph structure. Evaluations are conducted on six real-world social network datasets, measuring performance using key metrics such as Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), Variation of Information (VOI), and cluster purity. Our findings reveal that LLMs, particularly when guided by graph-aware strategies, can be successfully applied to community detection tasks in small to medium-sized graphs. We observe that the integration of instruction-tuned models and carefully engineered prompts significantly improves the accuracy and coherence of detected communities. These insights not only highlight the potential of LLMs in graph-based research but also underscore the importance of tailoring model interactions to the specific structure of graph data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com