Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring the Link Between Bayesian Inference and Embodied Intelligence: Toward Open Physical-World Embodied AI Systems (2507.21589v1)

Published 29 Jul 2025 in cs.AI

Abstract: Embodied intelligence posits that cognitive capabilities fundamentally emerge from - and are shaped by - an agent's real-time sensorimotor interactions with its environment. Such adaptive behavior inherently requires continuous inference under uncertainty. Bayesian statistics offers a principled probabilistic framework to address this challenge by representing knowledge as probability distributions and updating beliefs in response to new evidence. The core computational processes underlying embodied intelligence - including perception, action selection, learning, and even higher-level cognition - can be effectively understood and modeled as forms of Bayesian inference. Despite the deep conceptual connection between Bayesian statistics and embodied intelligence, Bayesian principles have not been widely or explicitly applied in today's embodied intelligence systems. In this work, we examine both Bayesian and contemporary embodied intelligence approaches through two fundamental lenses: search and learning - the two central themes in modern AI, as highlighted in Rich Sutton's influential essay "The Bitter Lesson". This analysis sheds light on why Bayesian inference has not played a central role in the development of modern embodied intelligence. At the same time, it reveals that current embodied intelligence systems remain largely confined to closed-physical-world environments, and highlights the potential for Bayesian methods to play a key role in extending these systems toward truly open physical-world embodied intelligence.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube