Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 13 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Structured Relevance Assessment for Robust Retrieval-Augmented Language Models (2507.21287v1)

Published 28 Jul 2025 in cs.AI

Abstract: Retrieval-Augmented LLMs (RALMs) face significant challenges in reducing factual errors, particularly in document relevance evaluation and knowledge integration. We introduce a framework for structured relevance assessment that enhances RALM robustness through improved document evaluation, balanced intrinsic and external knowledge integration, and effective handling of unanswerable queries. Our approach employs a multi-dimensional scoring system that considers both semantic matching and source reliability, utilizing embedding-based relevance scoring and synthetic training data with mixed-quality documents. We implement specialized benchmarking on niche topics, a knowledge integration mechanism, and an "unknown" response protocol for queries with insufficient knowledge coverage. Preliminary evaluations demonstrate significant reductions in hallucination rates and improved transparency in reasoning processes. Our framework advances the development of more reliable question-answering systems capable of operating effectively in dynamic environments with variable data quality. While challenges persist in accurately distinguishing credible information and balancing system latency with thoroughness, this work represents a meaningful step toward enhancing RALM reliability.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.