Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MMGraphRAG: Bridging Vision and Language with Interpretable Multimodal Knowledge Graphs (2507.20804v1)

Published 28 Jul 2025 in cs.AI

Abstract: Retrieval-Augmented Generation (RAG) enhances LLM generation by retrieving relevant information from external knowledge bases. However, conventional RAG methods face the issue of missing multimodal information. Multimodal RAG methods address this by fusing images and text through mapping them into a shared embedding space, but they fail to capture the structure of knowledge and logical chains between modalities. Moreover, they also require large-scale training for specific tasks, resulting in limited generalizing ability. To address these limitations, we propose MMGraphRAG, which refines visual content through scene graphs and constructs a multimodal knowledge graph (MMKG) in conjunction with text-based KG. It employs spectral clustering to achieve cross-modal entity linking and retrieves context along reasoning paths to guide the generative process. Experimental results show that MMGraphRAG achieves state-of-the-art performance on the DocBench and MMLongBench datasets, demonstrating strong domain adaptability and clear reasoning paths.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)