Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Ag2x2: Robust Agent-Agnostic Visual Representations for Zero-Shot Bimanual Manipulation (2507.19817v1)

Published 26 Jul 2025 in cs.RO

Abstract: Bimanual manipulation, fundamental to human daily activities, remains a challenging task due to its inherent complexity of coordinated control. Recent advances have enabled zero-shot learning of single-arm manipulation skills through agent-agnostic visual representations derived from human videos; however, these methods overlook crucial agent-specific information necessary for bimanual coordination, such as end-effector positions. We propose Ag2x2, a computational framework for bimanual manipulation through coordination-aware visual representations that jointly encode object states and hand motion patterns while maintaining agent-agnosticism. Extensive experiments demonstrate that Ag2x2 achieves a 73.5% success rate across 13 diverse bimanual tasks from Bi-DexHands and PerAct2, including challenging scenarios with deformable objects like ropes. This performance outperforms baseline methods and even surpasses the success rate of policies trained with expert-engineered rewards. Furthermore, we show that representations learned through Ag2x2 can be effectively leveraged for imitation learning, establishing a scalable pipeline for skill acquisition without expert supervision. By maintaining robust performance across diverse tasks without human demonstrations or engineered rewards, Ag2x2 represents a step toward scalable learning of complex bimanual robotic skills.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com