Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 158 tok/s Pro
2000 character limit reached

On Nilpotent and Solvable Quasi-Einstein Manifolds (2507.19674v1)

Published 25 Jul 2025 in math.DG, math-ph, and math.MP

Abstract: In this paper we investigate the structure of nilpotent Lie groups and unimodular solvable Lie groups with quasi-Einstein metric $(M,g,X)$ when $X$ is a left-invariant vector field. We define such a metric as a totally left-invariant quasi-Einstein metric. We prove that any non-flat unimodular solvable Lie group $S$ with a totally left-invariant quasi-Einstein metric, must have one-dimensional center. Along with this, if the adjoint action $ad_a$ of $S$ is a normal derivation, then $S$ must be standard, and have a quasi-Einstein nilpotent group as its nilradical. We also establish some necessary conditions for a nilpotent Lie group to be totally left-invariant quasi-Einstein. We prove that any left-invariant metric on Heisenberg Lie group is quasi-Einstein, and these are the only two-step nilpotent Lie groups that admit a totally left-invariant quasi-Einstein metric. We also obtain a structure theorem for quasi-Einstein compact manifolds $\Gamma\backslash G,$ where $G$ is unimodular solvable and $\Gamma$ is its discrete cocompact subgroup. As a consequence of these results, we prove that the only non-Abelian nilpotent Lie groups that admit a totally left-invariant quasi-Einstein metric and a discrete compact quotient, up to dimension six, are the 3-dimensional and 5-dimensional Heisenberg groups.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)