Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Comprehensive Evaluation on Quantization Techniques for Large Language Models (2507.17417v1)

Published 23 Jul 2025 in cs.LG

Abstract: For LLMs, post-training quantization (PTQ) can significantly reduce memory footprint and computational overhead. Model quantization is a rapidly evolving research field. Though many papers have reported breakthrough performance, they may not conduct experiments on the same ground since one quantization method usually contains multiple components. In addition, analyzing the theoretical connections among existing methods is crucial for in-depth understanding. To bridge these gaps, we conduct an extensive review of state-of-the-art methods and perform comprehensive evaluations on the same ground to ensure fair comparisons. To our knowledge, this fair and extensive investigation remains critically important yet underexplored. To better understand the theoretical connections, we decouple the published quantization methods into two steps: pre-quantization transformation and quantization error mitigation. We define the former as a preprocessing step applied before quantization to reduce the impact of outliers, making the data distribution flatter and more suitable for quantization. Quantization error mitigation involves techniques that offset the errors introduced during quantization, thereby enhancing model performance. We evaluate and analyze the impact of different components of quantization methods. Additionally, we analyze and evaluate the latest MXFP4 data format and its performance. Our experimental results demonstrate that optimized rotation and scaling yield the best performance for pre-quantization transformation, and combining low-rank compensation with GPTQ occasionally outperforms using GPTQ alone for quantization error mitigation. Furthermore, we explore the potential of the latest MXFP4 quantization and reveal that the optimal pre-quantization transformation strategy for INT4 does not generalize well to MXFP4, inspiring further investigation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com