Automated Safety Evaluations Across 20 Large Language Models: The Aymara LLM Risk and Responsibility Matrix (2507.14719v1)
Abstract: As LLMs become increasingly integrated into real-world applications, scalable and rigorous safety evaluation is essential. This paper introduces Aymara AI, a programmatic platform for generating and administering customized, policy-grounded safety evaluations. Aymara AI transforms natural-language safety policies into adversarial prompts and scores model responses using an AI-based rater validated against human judgments. We demonstrate its capabilities through the Aymara LLM Risk and Responsibility Matrix, which evaluates 20 commercially available LLMs across 10 real-world safety domains. Results reveal wide performance disparities, with mean safety scores ranging from 86.2% to 52.4%. While models performed well in well-established safety domains such as Misinformation (mean = 95.7%), they consistently failed in more complex or underspecified domains, notably Privacy & Impersonation (mean = 24.3%). Analyses of Variance confirmed that safety scores differed significantly across both models and domains (p < .05). These findings underscore the inconsistent and context-dependent nature of LLM safety and highlight the need for scalable, customizable tools like Aymara AI to support responsible AI development and oversight.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.