Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Automated Safety Evaluations Across 20 Large Language Models: The Aymara LLM Risk and Responsibility Matrix (2507.14719v1)

Published 19 Jul 2025 in cs.AI

Abstract: As LLMs become increasingly integrated into real-world applications, scalable and rigorous safety evaluation is essential. This paper introduces Aymara AI, a programmatic platform for generating and administering customized, policy-grounded safety evaluations. Aymara AI transforms natural-language safety policies into adversarial prompts and scores model responses using an AI-based rater validated against human judgments. We demonstrate its capabilities through the Aymara LLM Risk and Responsibility Matrix, which evaluates 20 commercially available LLMs across 10 real-world safety domains. Results reveal wide performance disparities, with mean safety scores ranging from 86.2% to 52.4%. While models performed well in well-established safety domains such as Misinformation (mean = 95.7%), they consistently failed in more complex or underspecified domains, notably Privacy & Impersonation (mean = 24.3%). Analyses of Variance confirmed that safety scores differed significantly across both models and domains (p < .05). These findings underscore the inconsistent and context-dependent nature of LLM safety and highlight the need for scalable, customizable tools like Aymara AI to support responsible AI development and oversight.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

HackerNews

  1. Safety Evaluations of 20 LLMs (1 point, 1 comment)